Blog

  • Automobile

    car, or an automobile, is a motor vehicle with wheels. Most definitions of cars state that they run primarily on roadsseat one to eight people, have four wheels, and mainly transport people rather than cargo.[1][2] There are around one billion cars in use worldwide.

    The French inventor Nicolas-Joseph Cugnot built the first steam-powered road vehicle in 1769, while the Swiss inventor François Isaac de Rivaz designed and constructed the first internal combustion-powered automobile in 1808. The modern car—a practical, marketable automobile for everyday use—was invented in 1886, when the German inventor Carl Benz patented his Benz Patent-Motorwagen. Commercial cars became widely available during the 20th century. The 1901 Oldsmobile Curved Dash and the 1908 Ford Model T, both American cars, are widely considered the first mass-produced[3][4] and mass-affordable[5][6][7] cars, respectively. Cars were rapidly adopted in the US, where they replaced horse-drawn carriages.[8] In Europe and other parts of the world, demand for automobiles did not increase until after World War II.[9] In the 21st century, car usage is still increasing rapidly, especially in China, India, and other newly industrialised countries.[10][11]

    Cars have controls for drivingparkingpassenger comfort, and a variety of lamps. Over the decades, additional features and controls have been added to vehicles, making them progressively more complex. These include rear-reversing camerasair conditioningnavigation systems, and in-car entertainment. Most cars in use in the early 2020s are propelled by an internal combustion engine, fueled by the combustion of fossil fuelsElectric cars, which were invented early in the history of the car, became commercially available in the 2000s and are predicted to cost less to buy than petrol-driven cars before 2025.[12][13] The transition from fossil fuel-powered cars to electric cars features prominently in most climate change mitigation scenarios,[14] such as Project Drawdown‘s 100 actionable solutions for climate change.[15]

    There are costs and benefits to car use. The costs to the individual include acquiring the vehicle, interest payments (if the car is financed), repairs and maintenance, fuel, depreciation, driving time, parking fees, taxes, and insurance.[16] The costs to society include maintaining roads, land-useroad congestionair pollutionnoise pollutionpublic health, and disposing of the vehicle at the end of its lifeTraffic collisions are the largest cause of injury-related deaths worldwide.[17] Personal benefits include on-demand transportation, mobility, independence, and convenience.[18] Societal benefits include economic benefits, such as job and wealth creation from the automotive industry, transportation provision, societal well-being from leisure and travel opportunities. People’s ability to move flexibly from place to place has far-reaching implications for the nature of societies.[19]

    Etymology

    The English word car is believed to originate from Latin carrus/carrum “wheeled vehicle” or (via Old North FrenchMiddle English carre “two-wheeled cart”, both of which in turn derive from Gaulish karros “chariot“.[20][21] It originally referred to any wheeled horse-drawn vehicle, such as a cartcarriage, or wagon.[22] The word also occurs in other Celtic languages.[23]

    “Motor car”, attested from 1895, is the usual formal term in British English.[2] “Autocar”, a variant likewise attested from 1895 and literally meaning “self-propelled car”, is now considered archaic.[24] “Horseless carriage” is attested from 1895.[25]

    “Automobile”, a classical compound derived from Ancient Greek autós (αὐτός) “self” and Latin mobilis “movable”, entered English from French and was first adopted by the Automobile Club of Great Britain in 1897.[26] It fell out of favour in Britain and is now used chiefly in North America,[27] where the abbreviated form “auto” commonly appears as an adjective in compound formations like “auto industry” and “auto mechanic“.[28][29]

    History

    Main article: History of the automobile

    This section may contain an excessive amount of intricate detail that may interest only a particular audienceSpecifically, detail should be moved to main article and summarized here. Please help by spinning off or relocating any relevant information, and removing excessive detail that may be against Wikipedia’s inclusion policy(September 2022) (Learn how and when to remove this message)
    Steam machine of Verbiest, in 1678 (Ferdinand Verbiest)
    Cugnot’s 1771 fardier à vapeur, as preserved at the Musée des Arts et Métiers, Paris
    Carl Benz, the inventor of the modern car
    The original Benz Patent-Motorwagen, the first modern car, built in 1885 and awarded the patent for the concept
    Bertha Benz, the first long distance driver
    The Flocken Elektrowagen was the first four-wheeled electric car
    Stuttgart, a cradle of the car[30][31] with Gottlieb Daimler and Wilhelm Maybach working there at the Daimler Motoren Gesellschaft and place of the modern day headquarters of Mercedes-Benz Group and Porsche

    In 1649, Hans Hautsch of Nuremberg built a clockwork-driven carriage.[32][33] The first steam-powered vehicle was designed by Ferdinand Verbiest, a Flemish member of a Jesuit mission in China around 1672. It was a 65-centimetre-long (26 in) scale-model toy for the Kangxi Emperor that was unable to carry a driver or a passenger.[18][34][35] It is not known with certainty if Verbiest’s model was successfully built or run.[35]

    Nicolas-Joseph Cugnot is widely credited with building the first full-scale, self-propelled mechanical vehicle in about 1769; he created a steam-powered tricycle.[36] He also constructed two steam tractors for the French Army, one of which is preserved in the French National Conservatory of Arts and Crafts.[36] His inventions were limited by problems with water supply and maintaining steam pressure.[36] In 1801, Richard Trevithick built and demonstrated his Puffing Devil road locomotive, believed by many to be the first demonstration of a steam-powered road vehicle. It was unable to maintain sufficient steam pressure for long periods and was of little practical use.

    The development of external combustion (steam) engines is detailed as part of the history of the car but often treated separately from the development of true cars. A variety of steam-powered road vehicles were used during the first part of the 19th century, including steam carssteam busesphaetons, and steam rollers. In the United Kingdom, sentiment against them led to the Locomotive Acts of 1865.

    In 1807, Nicéphore Niépce and his brother Claude created what was probably the world’s first internal combustion engine (which they called a Pyréolophore), but installed it in a boat on the river Saone in France.[37] Coincidentally, in 1807, the Swiss inventor François Isaac de Rivaz designed his own “de Rivaz internal combustion engine“, and used it to develop the world’s first vehicle to be powered by such an engine. The Niépces’ Pyréolophore was fuelled by a mixture of Lycopodium powder (dried spores of the Lycopodium plant), finely crushed coal dust and resin that were mixed with oil, whereas de Rivaz used a mixture of hydrogen and oxygen.[37] Neither design was successful, as was the case with others, such as Samuel BrownSamuel Morey, and Etienne Lenoir,[38] who each built vehicles (usually adapted carriages or carts) powered by internal combustion engines.[39]

    In November 1881, French inventor Gustave Trouvé demonstrated a three-wheeled car powered by electricity at the International Exposition of Electricity.[40] Although several other German engineers (including Gottlieb DaimlerWilhelm Maybach, and Siegfried Marcus) were working on cars at about the same time, the year 1886 is regarded as the birth year of the modern car—a practical, marketable automobile for everyday use—when the German Carl Benz patented his Benz Patent-Motorwagen; he is generally acknowledged as the inventor of the car.[39][41][42]

    In 1879, Benz was granted a patent for his first engine, which had been designed in 1878. Many of his other inventions made the use of the internal combustion engine feasible for powering a vehicle. His first Motorwagen was built in 1885 in Mannheim, Germany. He was awarded the patent for its invention as of his application on 29 January 1886 (under the auspices of his major company, Benz & Cie., which was founded in 1883). Benz began promotion of the vehicle on 3 July 1886, and about 25 Benz vehicles were sold between 1888 and 1893, when his first four-wheeler was introduced along with a cheaper model. They also were powered with four-stroke engines of his own design. Emile Roger of France, already producing Benz engines under license, now added the Benz car to his line of products. Because France was more open to the early cars, initially more were built and sold in France through Roger than Benz sold in Germany. In August 1888, Bertha Benz, the wife and business partner of Carl Benz, undertook the first road trip by car, to prove the road-worthiness of her husband’s invention.[43]

    In 1896, Benz designed and patented the first internal-combustion flat engine, called boxermotor. During the last years of the 19th century, Benz was the largest car company in the world with 572 units produced in 1899 and, because of its size, Benz & Cie., became a joint-stock company. The first motor car in central Europe and one of the first factory-made cars in the world, was produced by Czech company Nesselsdorfer Wagenbau (later renamed to Tatra) in 1897, the Präsident automobil.

    Daimler and Maybach founded Daimler Motoren Gesellschaft (DMG) in Cannstatt in 1890, and sold their first car in 1892 under the brand name Daimler. It was a horse-drawn stagecoach built by another manufacturer, which they retrofitted with an engine of their design. By 1895, about 30 vehicles had been built by Daimler and Maybach, either at the Daimler works or in the Hotel Hermann, where they set up shop after disputes with their backers. Benz, Maybach, and the Daimler team seem to have been unaware of each other’s early work. They never worked together; by the time of the merger of the two companies, Daimler and Maybach were no longer part of DMG. Daimler died in 1900 and later that year, Maybach designed an engine named Daimler-Mercedes that was placed in a specially ordered model built to specifications set by Emil Jellinek. This was a production of a small number of vehicles for Jellinek to race and market in his country. Two years later, in 1902, a new model DMG car was produced and the model was named Mercedes after the Maybach engine, which generated 35 hp. Maybach quit DMG shortly thereafter and opened a business of his own. Rights to the Daimler brand name were sold to other manufacturers.

    In 1890, Émile Levassor and Armand Peugeot of France began producing vehicles with Daimler engines, and so laid the foundation of the automotive industry in France. In 1891, Auguste Doriot and his Peugeot colleague Louis Rigoulot completed the longest trip by a petrol-driven vehicle when their self-designed and built Daimler powered Peugeot Type 3 completed 2,100 kilometres (1,300 mi) from Valentigney to Paris and Brest and back again. They were attached to the first Paris–Brest–Paris bicycle race, but finished six days after the winning cyclist, Charles Terront.

    The first design for an American car with a petrol internal combustion engine was made in 1877 by George Selden of Rochester, New York. Selden applied for a patent for a car in 1879, but the patent application expired because the vehicle was never built. After a delay of 16 years and a series of attachments to his application, on 5 November 1895, Selden was granted a US patent (U.S. patent 549,160) for a two-stroke car engine, which hindered, more than encouraged, development of cars in the United States. His patent was challenged by Henry Ford and others, and overturned in 1911.

    In 1893, the first running, petrol-driven American car was built and road-tested by the Duryea brothers of Springfield, Massachusetts. The first public run of the Duryea Motor Wagon took place on 21 September 1893, on Taylor Street in Metro Center Springfield.[44][45] Studebaker, subsidiary of a long-established wagon and coach manufacturer, started to build cars in 1897[46]: 66  and commenced sales of electric vehicles in 1902 and petrol vehicles in 1904.[47]

    In Britain, there had been several attempts to build steam cars with varying degrees of success, with Thomas Rickett even attempting a production run in 1860.[48] Santler from Malvern is recognised by the Veteran Car Club of Great Britain as having made the first petrol-driven car in the country in 1894,[49] followed by Frederick William Lanchester in 1895, but these were both one-offs.[49] The first production vehicles in Great Britain came from the Daimler Company, a company founded by Harry J. Lawson in 1896, after purchasing the right to use the name of the engines. Lawson’s company made its first car in 1897, and they bore the name Daimler.[49]

    In 1892, German engineer Rudolf Diesel was granted a patent for a “New Rational Combustion Engine”. In 1897, he built the first diesel engine.[39] Steam-, electric-, and petrol-driven vehicles competed for a few decades, with petrol internal combustion engines achieving dominance in the 1910s. Although various pistonless rotary engine designs have attempted to compete with the conventional piston and crankshaft design, only Mazda‘s version of the Wankel engine has had more than very limited success. All in all, it is estimated that over 100,000 patents created the modern automobile and motorcycle.[50]

    Mass production

    See also: Automotive industry

    Ransom E. Olds founded Olds Motor Vehicle Company (Oldsmobile) in 1897.
    Ford Motor Company automobile assembly line in the 1920s
    The Toyota Corolla is the best-selling car of all-time.

    Large-scale, production-line manufacturing of affordable cars was started by Ransom Olds in 1901 at his Oldsmobile factory in Lansing, Michigan, and based upon stationary assembly line techniques pioneered by Marc Isambard Brunel at the Portsmouth Block Mills, England, in 1802. The assembly line style of mass production and interchangeable parts had been pioneered in the US by Thomas Blanchard in 1821, at the Springfield Armory in Springfield, Massachusetts.[51] This concept was greatly expanded by Henry Ford, beginning in 1913 with the world’s first moving assembly line for cars at the Highland Park Ford Plant.

    As a result, Ford’s cars came off the line in 15-minute intervals, much faster than previous methods, increasing productivity eightfold, while using less manpower (from 12.5 manhours to 1 hour 33 minutes).[52] It was so successful, paint became a bottleneck. Only Japan black would dry fast enough, forcing the company to drop the variety of colours available before 1913, until fast-drying Duco lacquer was developed in 1926. This is the source of Ford’s apocryphal remark, “any color as long as it’s black”.[52] In 1914, an assembly line worker could buy a Model T with four months’ pay.[52]

    Ford’s complex safety procedures—especially assigning each worker to a specific location instead of allowing them to roam about—dramatically reduced the rate of injury.[53] The combination of high wages and high efficiency is called “Fordism” and was copied by most major industries. The efficiency gains from the assembly line also coincided with the economic rise of the US. The assembly line forced workers to work at a certain pace with very repetitive motions which led to more output per worker while other countries were using less productive methods.

    In the automotive industry, its success was dominating, and quickly spread worldwide seeing the founding of Ford France and Ford Britain in 1911, Ford Denmark 1923, Ford Germany 1925; in 1921, Citroën was the first native European manufacturer to adopt the production method. Soon, companies had to have assembly lines, or risk going bankrupt; by 1930, 250 companies which did not, had disappeared.[52]

    Development of automotive technology was rapid, due in part to the hundreds of small manufacturers competing to gain the world’s attention. Key developments included electric ignition and the electric self-starter (both by Charles Kettering, for the Cadillac Motor Company in 1910–1911), independent suspension, and four-wheel brakes.

    Since the 1920s, nearly all cars have been mass-produced to meet market needs, so marketing plans often have heavily influenced car design. It was Alfred P. Sloan who established the idea of different makes of cars produced by one company, called the General Motors Companion Make Program, so that buyers could “move up” as their fortunes improved.

    Reflecting the rapid pace of change, makes shared parts with one another so larger production volume resulted in lower costs for each price range. For example, in the 1930s, LaSalles, sold by Cadillac, used cheaper mechanical parts made by Oldsmobile; in the 1950s, Chevrolet shared bonnet, doors, roof, and windows with Pontiac; by the 1990s, corporate powertrains and shared platforms (with interchangeable brakes, suspension, and other parts) were common. Even so, only major makers could afford high costs, and even companies with decades of production, such as AppersonColeDorrisHaynes, or Premier, could not manage: of some two hundred American car makers in existence in 1920, only 43 survived in 1930, and with the Great Depression, by 1940, only 17 of those were left.[52]

    In Europe, much the same would happen. Morris set up its production line at Cowley in 1924, and soon outsold Ford, while beginning in 1923 to follow Ford’s practice of vertical integration, buying Hotchkiss’ British subsidiary (engines), Wrigley (gearboxes), and Osberton (radiators), for instance, as well as competitors, such as Wolseley: in 1925, Morris had 41 per cent of total British car production. Most British small-car assemblers, from Abbey to Xtra, had gone under. Citroën did the same in France, coming to cars in 1919; between them and other cheap cars in reply such as Renault‘s 10CV and Peugeot‘s 5CV, they produced 550,000 cars in 1925, and MorsHurtu, and others could not compete.[52] Germany’s first mass-manufactured car, the Opel 4PS Laubfrosch (Tree Frog), came off the line at Rüsselsheim in 1924, soon making Opel the top car builder in Germany, with 37.5 per cent of the market.[52]

    In Japan, car production was very limited before World War II. Only a handful of companies were producing vehicles in limited numbers, and these were small, three-wheeled for commercial uses, like Daihatsu, or were the result of partnering with European companies, like Isuzu building the Wolseley A-9 in 1922. Mitsubishi was also partnered with Fiat and built the Mitsubishi Model A based on a Fiat vehicle. ToyotaNissanSuzukiMazda, and Honda began as companies producing non-automotive products before the war, switching to car production during the 1950s. Kiichiro Toyoda’s decision to take Toyoda Loom Works into automobile manufacturing would create what would eventually become Toyota Motor Corporation, the largest automobile manufacturer in the world. Subaru, meanwhile, was formed from a conglomerate of six companies who banded together as Fuji Heavy Industries, as a result of having been broken up under keiretsu legislation.

    Components and design

    Propulsion and fuels

    See also: Alternative fuel vehicle

    2011 Nissan Leaf electric car
    The weight of the low battery stabilises the car.[54] This is a dual-motor, four-wheel-drive layout but many cars only have one motor.

    Fossil fuels

    Most cars in use in the early 2020s run on petrol burnt in an internal combustion engine (ICE). Some cities ban older more polluting petrol-driven cars and some countries plan to ban sales in future. However, some environmental groups say this phase-out of fossil fuel vehicles must be brought forwards to limit climate change. Production of petrol-fuelled cars peaked in 2017.[55][56]

    Other hydrocarbon fossil fuels also burnt by deflagration (rather than detonation) in ICE cars include dieselautogas, and CNG. Removal of fossil fuel subsidies,[57][58] concerns about oil dependence, tightening environmental laws and restrictions on greenhouse gas emissions are propelling work on alternative power systems for cars. This includes hybrid vehiclesplug-in electric vehicles and hydrogen vehicles. Out of all cars sold in 2021, nine per cent were electric, and by the end of that year there were more than 16 million electric cars on the world’s roads.[59] Despite rapid growth, less than two per cent of cars on the world’s roads were fully electric and plug-in hybrid cars by the end of 2021.[59] Cars for racing or speed records have sometimes employed jet or rocket engines, but these are impractical for common use. Oil consumption has increased rapidly in the 20th and 21st centuries because there are more cars; the 1980s oil glut even fuelled the sales of low-economy vehicles in OECD countries. The BRIC countries are adding to this consumption.

    Batteries

    Main article: Electric vehicle battery

    See also: Electric car § Batteries, and Automotive battery

    In almost all hybrid (even mild hybrid) and pure electric cars regenerative braking recovers and returns to a battery some energy which would otherwise be wasted by friction brakes getting hot.[60] Although all cars must have friction brakes (front disc brakes and either disc or drum rear brakes[61]) for emergency stops, regenerative braking improves efficiency, particularly in city driving.[62]

    User interface

    Main article: Car controls

    In the Ford Model T the left-side hand lever sets the rear wheel parking brakes and puts the transmission in neutral. The lever to the right controls the throttle. The lever on the left of the steering column is for ignition timing. The left foot pedal changes the two forward gears while the centre pedal controls reverse. The right pedal is the brake.

    Cars are equipped with controls used for driving, passenger comfort, and safety, normally operated by a combination of the use of feet and hands, and occasionally by voice on 21st-century cars. These controls include a steering wheel, pedals for operating the brakes and controlling the car’s speed (and, in a manual transmission car, a clutch pedal), a shift lever or stick for changing gears, and a number of buttons and dials for turning on lights, ventilation, and other functions. Modern cars’ controls are now standardised, such as the location for the accelerator and brake, but this was not always the case. Controls are evolving in response to new technologies, for example, the electric car and the integration of mobile communications.

    Some of the original controls are no longer required. For example, all cars once had controls for the choke valve, clutch, ignition timing, and a crank instead of an electric starter. However, new controls have also been added to vehicles, making them more complex. These include air conditioningnavigation systems, and in-car entertainment. Another trend is the replacement of physical knobs and switches by secondary controls with touchscreen controls such as BMW‘s iDrive and Ford‘s MyFord Touch. Another change is that while early cars’ pedals were physically linked to the brake mechanism and throttle, in the early 2020s, cars have increasingly replaced these physical linkages with electronic controls.

    Electronics and interior

    Panel for fuses and circuit breakers

    Cars are typically equipped with interior lighting which can be toggled manually or be set to light up automatically with doors open, an entertainment system which originated from car radios, sideways windows which can be lowered or raised electrically (manually on earlier cars), and one or multiple auxiliary power outlets for supplying portable appliances such as mobile phones, portable fridges, power inverters, and electrical air pumps from the on-board electrical system.[63][64][a] More costly upper-class and luxury cars are equipped with features earlier such as massage seats and collision avoidance systems.[65][66]

    Dedicated automotive fuses and circuit breakers prevent damage from electrical overload.

    Lighting

    Main article: Automotive lighting

    Audi A4 daytime running lights

    Cars are typically fitted with multiple types of lights. These include headlights, which are used to illuminate the way ahead and make the car visible to other users, so that the vehicle can be used at night; in some jurisdictions, daytime running lights; red brake lights to indicate when the brakes are applied; amber turn signal lights to indicate the turn intentions of the driver; white-coloured reverse lights to illuminate the area behind the car (and indicate that the driver will be or is reversing); and on some vehicles, additional lights (e.g., side marker lights) to increase the visibility of the car. Interior lights on the ceiling of the car are usually fitted for the driver and passengers. Some vehicles also have a boot light and, more rarely, an engine compartment light.

    Weight and size

    Chevrolet Suburban extended-length SUV weighs 3,300 kilograms (7,200 lb) (gross weight).[67]

    During the late 20th and early 21st century, cars increased in weight due to batteries,[68] modern steel safety cages, anti-lock brakes, airbags, and “more-powerful—if more efficient—engines”[69] and, as of 2019, typically weigh between 1 and 3 tonnes (1.1 and 3.3 short tons; 0.98 and 2.95 long tons).[70] Heavier cars are safer for the driver from a crash perspective, but more dangerous for other vehicles and road users.[69] The weight of a car influences fuel consumption and performance, with more weight resulting in increased fuel consumption and decreased performance. The Wuling Hongguang Mini EV, a typical city car, weighs about 700 kilograms (1,500 lb). Heavier cars include SUVs and extended-length SUVs like the Suburban. Cars have also become wider.[71]

    Some places tax heavier cars more:[72] as well as improving pedestrian safety this can encourage manufacturers to use materials such as recycled aluminium instead of steel.[73] It has been suggested that one benefit of subsidising charging infrastructure is that cars can use lighter batteries.[74]

    Seating and body style

    See also: Car body styleCar classificationTruck classification, and Vehicle size class

    Most cars are designed to carry multiple occupants, often with four or five seats. Cars with five seats typically seat two passengers in the front and three in the rear. Full-size cars and large sport utility vehicles can often carry six, seven, or more occupants depending on the arrangement of the seats. On the other hand, sports cars are most often designed with only two seats. Utility vehicles like pickup trucks, combine seating with extra cargo or utility functionality. The differing needs for passenger capacity and their luggage or cargo space has resulted in the availability of a large variety of body styles to meet individual consumer requirements that include, among others, the sedan/saloonhatchbackstation wagon/estatecoupe, and minivan.

    Safety

    Main articles: Car safetyTraffic collisionLow speed vehicle, and Epidemiology of motor vehicle collisions

    Result of a serious car collision

    Traffic collisions are the largest cause of injury-related deaths worldwide.[17] Mary Ward became one of the first documented car fatalities in 1869 in Parsonstown, Ireland,[75] and Henry Bliss one of the US’s first pedestrian car casualties in 1899 in New York City.[76] There are now standard tests for safety in new cars, such as the Euro and US NCAP tests,[77] and insurance-industry-backed tests by the Insurance Institute for Highway Safety (IIHS).[78] However, not all such tests consider the safety of people outside the car, such as drivers of other cars, pedestrians and cyclists.[79]

    Costs and benefits

    Main articles: Economics of car usageCar costs, and Effects of the car on societies

    Road congestion is an issue in many major cities (pictured is Chang’an Avenue in Beijing).[80]

    The costs of car usage, which may include the cost of: acquiring the vehicle, repairs and auto maintenance, fuel, depreciation, driving time, parking fees, taxes, and insurance,[16] are weighed against the cost of the alternatives, and the value of the benefits—perceived and real—of vehicle usage. The benefits may include on-demand transportation, mobility, independence, and convenience,[18] and emergency power.[81] During the 1920s, cars had another benefit: “[c]ouples finally had a way to head off on unchaperoned dates, plus they had a private space to snuggle up close at the end of the night.”[82]

    Similarly the costs to society of car use may include; maintaining roadsland useair pollutionnoise pollutionroad congestionpublic health, health care, and of disposing of the vehicle at the end of its life; and can be balanced against the value of the benefits to society that car use generates. Societal benefits may include: economy benefits, such as job and wealth creation, of car production and maintenance, transportation provision, society wellbeing derived from leisure and travel opportunities, and revenue generation from the tax opportunities. The ability of humans to move flexibly from place to place has far-reaching implications for the nature of societies.[19]

    Environmental effects

    See also: Exhaust gasWaste tiresEnvironmental effects of transportExternalities of automobilesNoise pollutionEnvironmental aspects of the electric car, and Vehicle recycling

    Trucks’ share of US vehicles produced, has tripled since 1975. Though vehicle fuel efficiency has increased within each category, the overall trend toward less efficient types of vehicles has offset some of the benefits of greater fuel economy and reductions in pollution and carbon dioxide emissions.[83] Without the shift towards SUVs, energy use per unit distance could have fallen 30% more than it did from 2010 to 2022.[84]
    close-up of 2 exhaust pipes with whitish smoke
    Car exhaust gas is one type of pollution

    Car production and use has a large number of environmental impacts: it causes local air pollution plastic pollution and contributes to greenhouse gas emissions and climate change.[85] Cars and vans caused 10% of energy-related carbon dioxide emissions in 2022.[86] As of 2023, electric cars produce about half the emissions over their lifetime as diesel and petrol cars. This is set to improve as countries produce more of their electricity from low-carbon sources.[87] Cars consume almost a quarter of world oil production as of 2019.[55] Cities planned around cars are often less dense, which leads to further emissions, as they are less walkable for instance.[85] A growing demand for large SUVs is driving up emissions from cars.[88]

    Cars are a major cause of air pollution,[89] which stems from exhaust gas in diesel and petrol cars and from dust from brakes, tyres, and road wear. Electric cars do not produce tailpipe emissions, but are generally heavier and therefore produce slightly more particulate matter.[90] Heavy metals and microplastics (from tyres) are also released into the environment, during production, use and at the end of life. Mining related to car manufacturing and oil spills both cause water pollution.[85]

    Animals and plants are often negatively affected by cars via habitat destruction and fragmentation from the road network and pollution. Animals are also killed every year on roads by cars, referred to as roadkill.[85] More recent road developments are including significant environmental mitigation in their designs, such as green bridges (designed to allow wildlife crossings) and creating wildlife corridors.

    Governments use fiscal policies, such as road tax, to discourage the purchase and use of more polluting cars;[91] Vehicle emission standards ban the sale of new highly pollution cars.[92] Many countries plan to stop selling fossil cars altogether between 2025 and 2050.[93] Various cities have implemented low-emission zones, banning old fossil fuel and Amsterdam is planning to ban fossil fuel cars completely.[94][95] Some cities make it easier for people to choose other forms of transport, such as cycling.[94] Many Chinese cities limit licensing of fossil fuel cars,[96]

    Social issues

    Mass production of personal motor vehicles in the United States and other developed countries with extensive territories such as Australia, Argentina, and France vastly increased individual and group mobility and greatly increased and expanded economic development in urban, suburban, exurban and rural areas.[citation needed] Growth in the popularity of cars and commuting has led to traffic congestion.[97] MoscowIstanbulBogotáMexico City and São Paulo were the world’s most congested cities in 2018 according to INRIX, a data analytics company.[98]

    Access to cars

    In the United States, the transport divide and car dependency resulting from domination of car-based transport systems presents barriers to employment in low-income neighbourhoods,[99] with many low-income individuals and families forced to run cars they cannot afford in order to maintain their income.[100] Dependency on automobiles by African Americans may result in exposure to the hazards of driving while black and other types of racial discrimination related to buying, financing and insuring them.[101]

    Health impact

    Further information: Motor vehicle pollution and pregnancy

    Air pollution from cars increases the risk of lung cancer and heart disease. It can also harm pregnancies: more children are born too early or with lower birth weight.[85] Children are extra vulnerable to air pollution, as their bodies are still developing and air pollution in children is linked to the development of asthmachildhood cancer, and neurocognitive issues such as autism.[102][85] The growth in popularity of the car allowed cities to sprawl, therefore encouraging more travel by car, resulting in inactivity and obesity, which in turn can lead to increased risk of a variety of diseases.[103] When places are designed around cars, children have fewer opportunities to go places by themselves, and lose opportunities to become more independent.[104][85]

    Emerging car technologies

    Although intensive development of conventional battery electric vehicles is continuing into the 2020s,[105] other car propulsion technologies that are under development include wireless charging,[106] hydrogen cars,[107][108] and hydrogen/electric hybrids.[109] Research into alternative forms of power includes using ammonia instead of hydrogen in fuel cells.[110]

    New materials which may replace steel car bodies include aluminium,[111] fiberglasscarbon fiberbiocomposites, and carbon nanotubes.[112] Telematics technology is allowing more and more people to share cars, on a pay-as-you-go basis, through car share and carpool schemes. Communication is also evolving due to connected car systems.[113] Open-source cars are not widespread.[114]

    Autonomous car

    Main article: Autonomous car

    A robotic Volkswagen Passat shown at Stanford University is a driverless car.

    Fully autonomous vehicles, also known as driverless cars, already exist as robotaxis[115][116] but have a long way to go before they are in general use.[117]

    Car sharing

    Car-share arrangements and carpooling are also increasingly popular, in the US and Europe.[118] For example, in the US, some car-sharing services have experienced double-digit growth in revenue and membership growth between 2006 and 2007. Services like car sharing offer residents to “share” a vehicle rather than own a car in already congested neighbourhoods.[119]

    Industry

    Main article: Automotive industry

    This section needs expansion. You can help by making an edit request(March 2019)
    A car being assembled in a factory

    The automotive industry designs, develops, manufactures, markets, and sells the world’s motor vehicles, more than three-quarters of which are cars. In 2020, there were 56 million cars manufactured worldwide,[120] down from 67 million the previous year.[121] The automotive industry in China produces by far the most (20 million in 2020), followed by Japan (seven million), then Germany, South Korea and India.[122] The largest market is China, followed by the US.

    Around the world, there are about a billion cars on the road;[123] they burn over a trillion litres (0.26×1012 US gal; 0.22×1012 imp gal) of petrol and diesel fuel yearly, consuming about 50 exajoules (14,000 TWh) of energy.[124] The numbers of cars are increasing rapidly in China and India.[125] In the opinion of some, urban transport systems based around the car have proved unsustainable, consuming excessive energy, affecting the health of populations, and delivering a declining level of service despite increasing investment. Many of these negative effects fall disproportionately on those social groups who are also least likely to own and drive cars.[126][127] The sustainable transport movement focuses on solutions to these problems. The car industry is also facing increasing competition from the public transport sector, as some people re-evaluate their private vehicle usage. In July 2021, the European Commission introduced the “Fit for 55” legislation package, outlining crucial directives for the automotive sector’s future.[128][129] According to this package, by 2035, all newly sold cars in the European market must be Zero-emissions vehicles.[130][131][132]

    Alternatives

    Main article: Alternatives to car use

    The Vélib’ in Paris, France, is the largest bikesharing system outside China.

    Established alternatives for some aspects of car use include public transport such as busses, trolleybusses, trains, subwaystramwayslight rail, cycling, and walkingBicycle sharing systems have been established in China and many European cities, including Copenhagen and Amsterdam. Similar programmes have been developed in large US cities.[133][134] Additional individual modes of transport, such as personal rapid transit could serve as an alternative to cars if they prove to be socially accepted.[135] A study which checked the costs and the benefits of introducing Low Traffic Neighbourhood in London found the benefits overpass the costs approximately by 100 times in the first 20 years and the difference is growing over time.[136]

  • Bicycle History

    bicycle, also called a pedal cyclebikepush-bike or cycle, is a human-powered or motor-assistedpedal-drivensingle-track vehicle, with two wheels attached to a frame, one behind the other. A bicycle rider is called a cyclist, or bicyclist.

    Bicycles were introduced in the 19th century in Europe. By the early 21st century there were more than 1 billion bicycles.[1][2] There are many more bicycles than cars.[3][4][5] Bicycles are the principal means of transport in many regions. They also provide a popular form of recreation, and have been adapted for use as children’s toys. Bicycles are used for fitnessmilitary and police applications, courier servicesbicycle racing, and artistic cycling.

    The basic shape and configuration of a typical upright or “safety” bicycle, has changed little since the first chain-driven model was developed around 1885.[6][7][8] However, many details have been improved, especially since the advent of modern materials and computer-aided design. These have allowed for a proliferation of specialized designs for many types of cycling. In the 21st century, electric bicycles have become popular.

    The bicycle’s invention has had an enormous effect on society, both in terms of culture and of advancing modern industrial methods. Several components that played a key role in the development of the automobile were initially invented for use in the bicycle, including ball bearingspneumatic tireschain-driven sprockets, and tension-spoked wheels.[9]

    Etymology

    The word bicycle first appeared in English print in The Daily News in 1868, to describe “Bysicles and trysicles” on the “Champs Elysées and Bois de Boulogne”.[10] The word was first used in 1847 in a French publication to describe an unidentified two-wheeled vehicle, possibly a carriage.[10] The design of the bicycle was an advance on the velocipede, although the words were used with some degree of overlap for a time.[10][11]

    Other words for bicycle include “bike”,[12] “pushbike”,[13] “pedal cycle”,[14] or “cycle”.[15] In Unicode, the code point for “bicycle” is 0x1F6B2. The entity 🚲 in HTML produces 🚲.[16]

    Although bike and cycle are used interchangeably to refer mostly to two types of two-wheelers, the terms still vary across the world. In India, for example, a cycle[17] refers only to a two-wheeler using pedal power whereas the term bike is used to describe a two-wheeler using internal combustion engine or electric motors as a source of motive power instead of motorcycle/motorbike.

    History

    Main article: History of the bicycle

    The “dandy horse“,[18] also called Draisienne or Laufmaschine (“running machine”), was the first human means of transport to use only two wheels in tandem and was invented by the German Baron Karl von Drais. It is regarded as the first bicycle and von Drais is seen as the “father of the bicycle”,[19][20][21][22] but it did not have pedals.[23][24][25][26] Von Drais introduced it to the public in Mannheim in 1817 and in Paris in 1818.[27][28] Its rider sat astride a wooden frame supported by two in-line wheels and pushed the vehicle along with his or her feet while steering the front wheel.[27]

    The first mechanically propelled, two-wheeled vehicle may have been built by Kirkpatrick MacMillan, a Scottish blacksmith, in 1839, although the claim is often disputed.[29] He is also associated with the first recorded instance of a cycling traffic offense, when a Glasgow newspaper in 1842 reported an accident in which an anonymous “gentleman from Dumfries-shire… bestride a velocipede… of ingenious design” knocked over a little girl in Glasgow and was fined five shillings (equivalent to £30 in 2023).[30]

    In the early 1860s, Frenchmen Pierre Michaux and Pierre Lallement took bicycle design in a new direction by adding a mechanical crank drive with pedals on an enlarged front wheel (the velocipede). This was the first in mass production. Another French inventor named Douglas Grasso had a failed prototype of Pierre Lallement’s bicycle several years earlier. Several inventions followed using rear-wheel drive, the best known being the rod-driven velocipede by Scotsman Thomas McCall in 1869. In that same year, bicycle wheels with wire spokes were patented by Eugène Meyer of Paris.[31] The French vélocipède, made of iron and wood, developed into the “penny-farthing” (historically known as an “ordinary bicycle”, a retronym, since there was then no other kind).[32] It featured a tubular steel frame on which were mounted wire-spoked wheels with solid rubber tires. These bicycles were difficult to ride due to their high seat and poor weight distribution. In 1868 Rowley Turner, a sales agent of the Coventry Sewing Machine Company (which soon became the Coventry Machinists Company), brought a Michaux cycle to Coventry, England. His uncle, Josiah Turner, and business partner James Starley, used this as a basis for the ‘Coventry Model’ in what became Britain’s first cycle factory.[33]

    The dwarf ordinary addressed some of these faults by reducing the front wheel diameter and setting the seat further back. This, in turn, required gearing—effected in a variety of ways—to efficiently use pedal power. Having to both pedal and steer via the front wheel remained a problem. Englishman J.K. Starley (nephew of James Starley), J.H. Lawson, and Shergold solved this problem by introducing the chain drive (originated by the unsuccessful “bicyclette” of Englishman Henry Lawson),[34] connecting the frame-mounted cranks to the rear wheel. These models were known as safety bicycles, dwarf safeties, or upright bicycles for their lower seat height and better weight distribution, although without pneumatic tires the ride of the smaller-wheeled bicycle would be much rougher than that of the larger-wheeled variety. Starley’s 1885 Rover, manufactured in Coventry[35] is usually described as the first recognizably modern bicycle.[36] Soon the seat tube was added which created the modern bike’s double-triangle diamond frame.

    Further innovations increased comfort and ushered in a second bicycle craze, the 1890s Golden Age of Bicycles. In 1888, Scotsman John Boyd Dunlop introduced the first practical pneumatic tire, which soon became universal. Willie Hume demonstrated the supremacy of Dunlop’s tyres in 1889, winning the tyre’s first-ever races in Ireland and then England.[37][38] Soon after, the rear freewheel was developed, enabling the rider to coast. This refinement led to the 1890s invention[39] of coaster brakesDérailleur gears and hand-operated Bowden cable-pull brakes were also developed during these years, but were only slowly adopted by casual riders.

    The Svea Velocipede with vertical pedal arrangement and locking hubs was introduced in 1892 by the Swedish engineers Fredrik Ljungström and Birger Ljungström. It attracted attention at the World Fair and was produced in a few thousand units.

    In the 1870s many cycling clubs flourished. They were popular in a time when there were no cars on the market and the principal mode of transportation was horse-drawn vehicles, such the horse and buggy or the horsecar. Among the earliest clubs was The Bicycle Touring Club, which has operated since 1878. By the turn of the century, cycling clubs flourished on both sides of the Atlantic, and touring and racing became widely popular. The Raleigh Bicycle Company was founded in Nottingham, England in 1888. It became the biggest bicycle manufacturing company in the world, making over two million bikes per year.[40]

    Bicycles and horse buggies were the two mainstays of private transportation just prior to the automobile, and the grading of smooth roads in the late 19th century was stimulated by the widespread advertising, production, and use of these devices.[8] More than 1 billion bicycles have been manufactured worldwide as of the early 21st century.[1][2] Bicycles are the most common vehicle of any kind in the world, and the most numerous model of any kind of vehicle, whether human-powered or motor vehicle, is the Chinese Flying Pigeon, with numbers exceeding 500 million.[1] The next most numerous vehicle, the Honda Super Cub motorcycle, has more than 100 million units made,[41] while most produced car, the Toyota Corolla, has reached 44 million and counting.[3][4][5][42]

    Uses

    Bicycles are used for transportation, bicycle commuting, and utility cycling.[43] They are also used professionally by mail carriersparamedicspolicemessengers, and general delivery services. Military uses of bicycles include communicationsreconnaissance, troop movement, supply of provisions, and patrol, such as in bicycle infantries.[44]

    They are also used for recreational purposes, including bicycle touringmountain bikingphysical fitness, and playBicycle sports include racingBMX racingtrack racingcriteriumroller racingsportives and time trials. Major multi-stage professional events are the Giro d’Italia, the Tour de France, the Vuelta a España, the Tour de Pologne, and the Volta a Portugal. They are also used for entertainment and pleasure in other ways, such as in organised mass rides, artistic cycling and freestyle BMX.

    Technical aspects

    This section needs additional citations for verification. Please help improve this article by adding citations to reliable sources in this section. Unsourced material may be challenged and removed. (June 2021) (Learn how and when to remove this message)
    Firefighter bicycle

    The bicycle has undergone continual adaptation and improvement since its inception. These innovations have continued with the advent of modern materials and computer-aided design, allowing for a proliferation of specialized bicycle types, improved bicycle safety, and riding comfort.[45]

    Types

    Main article: List of bicycle types

    A man riding an electric bicycle

    Bicycles can be categorized in many different ways: by function, by number of riders, by general construction, by gearing or by means of propulsion. The more common types include utility bicyclesmountain bicyclesracing bicyclestouring bicycleshybrid bicyclescruiser bicycles, and BMX bikes. Less common are tandemslow riderstall bikesfixed gearfolding modelsamphibious bicyclescargo bikesrecumbents and electric bicycles.

    Unicyclestricycles and quadracycles are not strictly bicycles, as they have respectively one, three and four wheels, but are often referred to informally as “bikes” or “cycles”.

    Dynamics

    Main article: Bicycle and motorcycle dynamics

    A cyclist leaning in a turn

    A bicycle stays upright while moving forward by being steered so as to keep its center of mass over the wheels.[46] This steering is usually provided by the rider, but under certain conditions may be provided by the bicycle itself.[47]

    The combined center of mass of a bicycle and its rider must lean into a turn to successfully navigate it. This lean is induced by a method known as countersteering, which can be performed by the rider turning the handlebars directly with the hands[48] or indirectly by leaning the bicycle.[49]

    Short-wheelbase or tall bicycles, when braking, can generate enough stopping force at the front wheel to flip longitudinally.[50] The act of purposefully using this force to lift the rear wheel and balance on the front without tipping over is a trick known as a stoppie, endo, or front wheelie.

    Performance

    Main article: Bicycle performance

    The bicycle is extraordinarily efficient in both biological and mechanical terms. The bicycle is the most efficient human-powered means of transportation in terms of energy a person must expend to travel a given distance.[51] From a mechanical viewpoint, up to 99% of the energy delivered by the rider into the pedals is transmitted to the wheels, although the use of gearing mechanisms may reduce this by 10–15%.[52][53] In terms of the ratio of cargo weight a bicycle can carry to total weight, it is also an efficient means of cargo transportation.

    A human traveling on a bicycle at low to medium speeds of around 16–24 km/h (10–15 mph) uses only the power required to walk. Air drag, which is proportional to the square of speed, requires dramatically higher power outputs as speeds increase. If the rider is sitting upright, the rider’s body creates about 75% of the total drag of the bicycle/rider combination. Drag can be reduced by seating the rider in a more aerodynamically streamlined position. Drag can also be reduced by covering the bicycle with an aerodynamic fairing. The fastest recorded unpaced speed on a flat surface is 144.18 km/h (89.59 mph).[54]

    In addition, the carbon dioxide generated in the production and transportation of the food required by the bicyclist, per mile traveled, is less than 110 that generated by energy efficient motorcars.[55]

    Parts

    This section needs additional citations for verification. Please help improve this article by adding citations to reliable sources in this section. Unsourced material may be challenged and removed. (June 2021) (Learn how and when to remove this message)

    Frame

    Main article: Bicycle frame

    The great majority of modern bicycles have a frame with upright seating that looks much like the first chain-driven bike.[6][7][8] These upright bicycles almost always feature the diamond frame, a truss consisting of two triangles: the front triangle and the rear triangle. The front triangle consists of the head tube, top tube, down tube, and seat tube. The head tube contains the headset, the set of bearings that allows the fork to turn smoothly for steering and balance. The top tube connects the head tube to the seat tube at the top, and the down tube connects the head tube to the bottom bracket. The rear triangle consists of the seat tube and paired chain stays and seat stays. The chain stays run parallel to the chain, connecting the bottom bracket to the rear dropout, where the axle for the rear wheel is held. The seat stays connect the top of the seat tube (at or near the same point as the top tube) to the rear fork ends.

    Historically, women’s bicycle frames had a top tube that connected in the middle of the seat tube instead of the top, resulting in a lower standover height at the expense of compromised structural integrity, since this places a strong bending load in the seat tube, and bicycle frame members are typically weak in bending. This design, referred to as a step-through frame or as an open frame, allows the rider to mount and dismount in a dignified way while wearing a skirt or dress. While some women’s bicycles continue to use this frame style, there is also a variation, the mixte, which splits the top tube laterally into two thinner top tubes that bypass the seat tube on each side and connect to the rear fork ends. The ease of stepping through is also appreciated by those with limited flexibility or other joint problems. Because of its persistent image as a “women’s” bicycle, step-through frames are not common for larger frames.

    Step-throughs were popular partly for practical reasons and partly for social mores of the day. For most of the history of bicycles’ popularity women have worn long skirts, and the lower frame accommodated these better than the top-tube. Furthermore, it was considered “unladylike” for women to open their legs to mount and dismount—in more conservative times women who rode bicycles at all were vilified as immoral or immodest. These practices were akin to the older practice of riding horse sidesaddle.[56]

    Another style is the recumbent bicycle. These are inherently more aerodynamic than upright versions, as the rider may lean back onto a support and operate pedals that are on about the same level as the seat. The world’s fastest bicycle is a recumbent bicycle but this type was banned from competition in 1934 by the Union Cycliste Internationale.[57]

    Historically, materials used in bicycles have followed a similar pattern as in aircraft, the goal being high strength and low weight. Since the late 1930s alloy steels have been used for frame and fork tubes in higher quality machines. By the 1980s aluminum welding techniques had improved to the point that aluminum tube could safely be used in place of steel. Since then aluminum alloy frames and other components have become popular due to their light weight, and most mid-range bikes are now principally aluminum alloy of some kind.[where?] More expensive bikes use carbon fibre due to its significantly lighter weight and profiling ability, allowing designers to make a bike both stiff and compliant by manipulating the lay-up. Virtually all professional racing bicycles now use carbon fibre frames, as they have the best strength to weight ratio. A typical modern carbon fiber frame can weigh less than 1 kilogram (2.2 lb).

    Other exotic frame materials include titanium and advanced alloys. Bamboo, a natural composite material with high strength-to-weight ratio and stiffness[58] has been used for bicycles since 1894.[59] Recent versions use bamboo for the primary frame with glued metal connections and parts, priced as exotic models.[59][60][61]

    Drivetrain and gearing

    Main article: Bicycle drivetrain systems

    The drivetrain begins with pedals which rotate the cranks, which are held in axis by the bottom bracket. Most bicycles use a chain to transmit power to the rear wheel. A very small number of bicycles use a shaft drive to transmit power, or special belts. Hydraulic bicycle transmissions have been built, but they are currently inefficient and complex.

    Since cyclists’ legs are most efficient over a narrow range of pedaling speeds, or cadence, a variable gear ratio helps a cyclist to maintain an optimum pedalling speed while covering varied terrain. Some, mainly utility, bicycles use hub gears with between 3 and 14 ratios, but most use the generally more efficient dérailleur system, by which the chain is moved between different cogs called chainrings and sprockets to select a ratio. A dérailleur system normally has two dérailleurs, or mechs, one at the front to select the chainring and another at the back to select the sprocket. Most bikes have two or three chainrings, and from 5 to 12 sprockets on the back, with the number of theoretical gears calculated by multiplying front by back. In reality, many gears overlap or require the chain to run diagonally, so the number of usable gears is fewer.

    An alternative to chaindrive is to use a synchronous belt. These are toothed and work much the same as a chain—popular with commuters and long distance cyclists they require little maintenance. They cannot be shifted across a cassette of sprockets, and are used either as single speed or with a hub gear.

    Different gears and ranges of gears are appropriate for different people and styles of cycling. Multi-speed bicycles allow gear selection to suit the circumstances: a cyclist could use a high gear when cycling downhill, a medium gear when cycling on a flat road, and a low gear when cycling uphill. In a lower gear every turn of the pedals leads to fewer rotations of the rear wheel. This allows the energy required to move the same distance to be distributed over more pedal turns, reducing fatigue when riding uphill, with a heavy load, or against strong winds. A higher gear allows a cyclist to make fewer pedal turns to maintain a given speed, but with more effort per turn of the pedals.

    With a chain drive transmission, a chainring attached to a crank drives the chain, which in turn rotates the rear wheel via the rear sprocket(s) (cassette or freewheel). There are four gearing options: two-speed hub gear integrated with chain ring, up to 3 chain rings, up to 12 sprockets, hub gear built into rear wheel (3-speed to 14-speed). The most common options are either a rear hub or multiple chain rings combined with multiple sprockets (other combinations of options are possible but less common).

    Steering

    Bicycle grips made of leather. Anatomic shape distributes weight over palm area to prevent cyclist’s palsy (ulnar syndrome).[62]

    The handlebars connect to the stem that connects to the fork that connects to the front wheel, and the whole assembly connects to the bike and rotates about the steering axis via the headset bearings. Three styles of handlebar are common. Upright handlebars, the norm in Europe and elsewhere until the 1970s, curve gently back toward the rider, offering a natural grip and comfortable upright position. Drop handlebars “drop” as they curve forward and down, offering the cyclist best braking power from a more aerodynamic “crouched” position, as well as more upright positions in which the hands grip the brake lever mounts, the forward curves, or the upper flat sections for increasingly upright postures. Mountain bikes generally feature a ‘straight handlebar’ or ‘riser bar’ with varying degrees of sweep backward and centimeters rise upwards, as well as wider widths which can provide better handling due to increased leverage against the wheel.

    Seating

    A Selle San Marco saddle designed for women

    Saddles also vary with rider preference, from the cushioned ones favored by short-distance riders to narrower saddles which allow more room for leg swings. Comfort depends on riding position. With comfort bikes and hybrids, cyclists sit high over the seat, their weight directed down onto the saddle, such that a wider and more cushioned saddle is preferable. For racing bikes where the rider is bent over, weight is more evenly distributed between the handlebars and saddle, the hips are flexed, and a narrower and harder saddle is more efficient. Differing saddle designs exist for male and female cyclists, accommodating the genders’ differing anatomies and sit bone width measurements, although bikes typically are sold with saddles most appropriate for men. Suspension seat posts and seat springs provide comfort by absorbing shock but can add to the overall weight of the bicycle.

    A recumbent bicycle has a reclined chair-like seat that some riders find more comfortable than a saddle, especially riders who suffer from certain types of seat, back, neck, shoulder, or wrist pain. Recumbent bicycles may have either under-seat or over-seat steering.

    Brakes

    Main article: Bicycle brake

    Linear-pull brake, also known by the Shimano trademark: V-Brake, on rear wheel of a mountain bike

    Bicycle brakes may be rim brakes, in which friction pads are compressed against the wheel rims; hub brakes, where the mechanism is contained within the wheel hub, or disc brakes, where pads act on a rotor attached to the hub. Most road bicycles use rim brakes, but some use disc brakes.[63] Disc brakes are more common for mountain bikes, tandems and recumbent bicycles than on other types of bicycles, due to their increased power, coupled with an increased weight and complexity.[64]

    A front disc brake, mounted to the fork and hub

    With hand-operated brakes, force is applied to brake levers mounted on the handlebars and transmitted via Bowden cables or hydraulic lines to the friction pads, which apply pressure to the braking surface, causing friction which slows the bicycle down. A rear hub brake may be either hand-operated or pedal-actuated, as in the back pedal coaster brakes which were popular in North America until the 1960s.

    Track bicycles do not have brakes, because all riders ride in the same direction around a track which does not necessitate sharp deceleration. Track riders are still able to slow down because all track bicycles are fixed-gear, meaning that there is no freewheel. Without a freewheel, coasting is impossible, so when the rear wheel is moving, the cranks are moving. To slow down, the rider applies resistance to the pedals, acting as a braking system which can be as effective as a conventional rear wheel brake, but not as effective as a front wheel brake.[65]

    Suspension

    Main article: Bicycle suspension

    Bicycle suspension refers to the system or systems used to suspend the rider and all or part of the bicycle. This serves two purposes: to keep the wheels in continuous contact with the ground, improving control, and to isolate the rider and luggage from jarring due to rough surfaces, improving comfort.

    Bicycle suspensions are used primarily on mountain bicycles, but are also common on hybrid bicycles, as they can help deal with problematic vibration from poor surfaces. Suspension is especially important on recumbent bicycles, since while an upright bicycle rider can stand on the pedals to achieve some of the benefits of suspension, a recumbent rider cannot.

    Basic mountain bicycles and hybrids usually have front suspension only, whilst more sophisticated ones also have rear suspension. Road bicycles tend to have no suspension.

    Wheels and tires

    Main articles: Bicycle wheel and Bicycle tire

    The wheel axle fits into fork ends in the frame and fork. A pair of wheels may be called a wheelset, especially in the context of ready-built “off the shelf”, performance-oriented wheels.

    Tires vary enormously depending on their intended purpose. Road bicycles use tires 18 to 25 millimeters wide, most often completely smooth, or slick, and inflated to high pressure to roll fast on smooth surfaces. Off-road tires are usually between 38 and 64 mm (1.5 and 2.5 in) wide, and have treads for gripping in muddy conditions or metal studs for ice.

    Groupset

    Groupset generally refers to all of the components that make up a bicycle excluding the bicycle frame, fork, stem, wheels, tires, and rider contact points, such as the saddle and handlebars.

    Accessories

    Touring bicycle equipped with front and rear racks, fenders (called mud-guards), water bottles in cages, four panniers and a handlebar bag

    Some components, which are often optional accessories on sports bicycles, are standard features on utility bicycles to enhance their usefulness, comfort, safety and visibility. Fenders with spoilers (mudflaps) protect the cyclist and moving parts from spray when riding through wet areas. In some countries (e.g. Germany, UK), fenders are called mudguards. The chainguards protect clothes from oil on the chain while preventing clothing from being caught between the chain and crankset teeth. Kick stands keep bicycles upright when parked, and bike locks deter theft. Front-mounted baskets, front or rear luggage carriers or racks, and panniers mounted above either or both wheels can be used to carry equipment or cargo. Pegs can be fastened to one, or both of the wheel hubs to either help the rider perform certain tricks, or allow a place for extra riders to stand, or rest.[citation needed] Parents sometimes add rear-mounted child seats, an auxiliary saddle fitted to the crossbar, or both to transport children. Bicycles can also be fitted with a hitch to tow a trailer for carrying cargo, a child, or both.

    Toe-clips and toestraps and clipless pedals help keep the foot locked in the proper pedal position and enable cyclists to pull and push the pedals. Technical accessories include cyclocomputers for measuring speed, distance, heart rate, GPS data etc. Other accessories include lights, reflectors, mirrors, racks, trailers, bags, water bottles and cages, and bell.[66] Bicycle lights, reflectors, and helmets are required by law in some geographic regions depending on the legal code. It is more common to see bicycles with bottle generators, dynamos, lights, fenders, racks and bells in Europe. Bicyclists also have specialized form fitting and high visibility clothing.

    Children’s bicycles may be outfitted with cosmetic enhancements such as bike horns, streamers, and spoke beads.[67] Training wheels are sometimes used when learning to ride, but a dedicated balance bike teaches independent riding more effectively.[68][69]

    Bicycle helmets can reduce injury in the event of a collision or accident, and a suitable helmet is legally required of riders in many jurisdictions.[70][71] Helmets may be classified as an accessory[66] or as an item of clothing.[72]

    Bike trainers are used to enable cyclists to cycle while the bike remains stationary. They are frequently used to warm up before races or indoors when riding conditions are unfavorable.[73]

    Standards

    A number of formal and industry standards exist for bicycle components to help make spare parts exchangeable and to maintain a minimum product safety.

    The International Organization for Standardization (ISO) has a special technical committee for cycles, TC149, that has the scope of “Standardization in the field of cycles, their components and accessories with particular reference to terminology, testing methods and requirements for performance and safety, and interchangeability”.

    The European Committee for Standardization (CEN) also has a specific Technical Committee, TC333, that defines European standards for cycles. Their mandate states that EN cycle standards shall harmonize with ISO standards. Some CEN cycle standards were developed before ISO published their standards, leading to strong European influences in this area. European cycle standards tend to describe minimum safety requirements, while ISO standards have historically harmonized parts geometry.[note 1]

    Maintenance and repair

    Like all devices with mechanical moving parts, bicycles require a certain amount of regular maintenance and replacement of worn parts. A bicycle is relatively simple compared with a car, so some cyclists choose to do at least part of the maintenance themselves. Some components are easy to handle using relatively simple tools, while other components may require specialist manufacturer-dependent tools.

    Many bicycle components are available at several different price/quality points; manufacturers generally try to keep all components on any particular bike at about the same quality level, though at the very cheap end of the market there may be some skimping on less obvious components (e.g. bottom bracket).

    • There are several hundred assisted-service Community Bicycle Organizations worldwide.[74] At a Community Bicycle Organization, laypeople bring in bicycles needing repair or maintenance; volunteers teach them how to do the required steps.
    • Full service is available from bicycle mechanics at a local bike shop.
    • In areas where it is available, some cyclists purchase roadside assistance from companies such as the Better World Club or the American Automobile Association.

    Maintenance

    The most basic maintenance item is keeping the tires correctly inflated; this can make a noticeable difference as to how the bike feels to ride. Bicycle tires usually have a marking on the sidewall indicating the pressure appropriate for that tire. Bicycles use much higher pressures than cars: car tires are normally in the range of 30 to 40 pounds per square inch (210 to 280 kPa), whereas bicycle tires are normally in the range of 60 to 100 pounds per square inch (410 to 690 kPa).

    Another basic maintenance item is regular lubrication of the chain and pivot points for derailleurs and brake components. Most of the bearings on a modern bike are sealed and grease-filled and require little or no attention; such bearings will usually last for 10,000 miles (16,000 km) or more. The crank bearings require periodic maintenance, which involves removing, cleaning and repacking with the correct grease.

    The chain and the brake blocks are the components which wear out most quickly, so these need to be checked from time to time, typically every 500 miles (800 km) or so. Most local bike shops will do such checks for free. Note that when a chain becomes badly worn it will also wear out the rear cogs/cassette and eventually the chain ring(s), so replacing a chain when only moderately worn will prolong the life of other components.

    Over the longer term, tires do wear out, after 2,000 to 5,000 miles (3,200 to 8,000 km); a rash of punctures is often the most visible sign of a worn tire.

    Repair

    Very few bicycle components can actually be repaired; replacement of the failing component is the normal practice.

    The most common roadside problem is a puncture of the tire’s inner tube. A patch kit may be employed to fix the puncture or the tube can be replaced, though the latter solution comes at a greater cost and waste of material.[75] Some brands of tires are much more puncture-resistant than others, often incorporating one or more layers of Kevlar; the downside of such tires is that they may be heavier and/or more difficult to fit and remove.

    Tools

    Main article: Bicycle tools

    Puncture repair kit with tire levers, sandpaper to clean off an area of the inner tube around the puncture, a tube of rubber solution (vulcanizing fluid), round and oval patches, a metal grater and piece of chalk to make chalk powder (to dust over excess rubber solution). Kits often also include a wax crayon to mark the puncture location.

    There are specialized bicycle tools for use both in the shop and at the roadside. Many cyclists carry tool kits. These may include a tire patch kit (which, in turn, may contain any combination of a hand pump or CO2 pumptire levers, spare tubes, self-adhesive patches, or tube-patching material, an adhesive, a piece of sandpaper or a metal grater (for roughening the tube surface to be patched) and sometimes even a block of French chalk), wrencheshex keys, screwdrivers, and a chain tool. Special, thin wrenches are often required for maintaining various screw-fastened parts, specifically, the frequently lubricated ball-bearing “cones”.[76][77] There are also cycling-specific multi-tools that combine many of these implements into a single compact device. More specialized bicycle components may require more complex tools, including proprietary tools specific for a given manufacturer.

    Social and historical aspects

    The bicycle has had a considerable effect on human society, in both the cultural and industrial realms.[78]

    In daily life

    See also: Cycling infrastructure and History of cycling infrastructure

    Cyclists in Greymouth, New Zealand (c.1898-1905)

    Around the turn of the 20th century, bicycles reduced crowding in inner-city tenements by allowing workers to commute from more spacious dwellings in the suburbs. They also reduced dependence on horses. Bicycles allowed people to travel for leisure into the country, since bicycles were three times as energy efficient as walking and three to four times as fast.

    Bikeway in New York City, USA (2008)

    In built-up cities around the world, urban planning uses cycling infrastructure like bikeways to reduce traffic congestion and air pollution.[79] A number of cities around the world have implemented schemes known as bicycle sharing systems or community bicycle programs.[80][81] The first of these was the White Bicycle plan in Amsterdam in 1965. It was followed by yellow bicycles in La Rochelle and green bicycles in Cambridge. These initiatives complement public transport systems and offer an alternative to motorized traffic to help reduce congestion and pollution.[82] In Europe, especially in the Netherlands and parts of Germany and Denmark, bicycle commuting is common. In Copenhagen, a cyclists’ organization runs a Cycling Embassy that promotes biking for commuting and sightseeing. The United Kingdom has a tax break scheme (IR 176) that allows employees to buy a new bicycle tax free to use for commuting.[83]

    In the Netherlands all train stations offer free bicycle parking, or a more secure parking place for a small fee, with the larger stations also offering bicycle repair shops. Cycling is so popular that the parking capacity may be exceeded, while in some places such as Delft the capacity is usually exceeded.[84] In Trondheim in Norway, the Trampe bicycle lift has been developed to encourage cyclists by giving assistance on a steep hill. Buses in many cities have bicycle carriers mounted on the front.

    There are towns in some countries where bicycle culture has been an integral part of the landscape for generations, even without much official support. That is the case of Ílhavo, in Portugal.

    In cities where bicycles are not integrated into the public transportation system, commuters often use bicycles as elements of a mixed-mode commute, where the bike is used to travel to and from train stations or other forms of rapid transit. Some students who commute several miles drive a car from home to a campus parking lot, then ride a bicycle to class. Folding bicycles are useful in these scenarios, as they are less cumbersome when carried aboard. Los Angeles removed a small amount of seating on some trains to make more room for bicycles and wheel chairs.[85]

    Urban cyclists in Copenhagen, Denmark, at a traffic light

    Some US companies, notably in the tech sector, are developing both innovative cycle designs and cycle-friendliness in the workplace. Foursquare, whose CEO Dennis Crowley “pedaled to pitch meetings … [when he] was raising money from venture capitalists” on a two-wheeler, chose a new location for its New York headquarters “based on where biking would be easy”. Parking in the office was also integral to HQ planning. Mitchell Moss, who runs the Rudin Center for Transportation Policy & Management at New York University, said in 2012: “Biking has become the mode of choice for the educated high tech worker”.[86]

    Bicycles offer an important mode of transport in many developing countries. Until recently, bicycles have been a staple of everyday life throughout Asian countries. They are the most frequently used method of transport for commuting to work, school, shopping, and life in general. In Europe, bicycles are commonly used.[87] They also offer a degree of exercise to keep individuals healthy.[88]

    Bicycles are also celebrated in the visual arts. An example of this is the Bicycle Film Festival, a film festival hosted all around the world.

    Poverty alleviation

    Men in Uganda using a bicycle to transport bananas

    This section is an excerpt from Bicycle poverty reduction.[edit]

    Tanzanian boy transporting fodder on his bicycle to feed his family cattle

    Bicycle poverty reduction is the concept that access to bicycles and the transportation infrastructure to support them can dramatically reduce poverty.[89][90][91][92] This has been demonstrated in various pilot projects in South Asia and Africa.[93][94][95] Experiments done in Africa (Uganda and Tanzania) and Sri Lanka on hundreds of households have shown that a bicycle can increase the income of a poor family by as much as 35%.[93][96][97]Transport, if analyzed for the cost–benefit analysis for rural poverty alleviation, has given one of the best returns in this regard. For example, road investments in India were a staggering 3–10 times more effective than almost all other investments and subsidies in rural economy in the decade of the 1990s. A road can ease transport on a macro level, while bicycle access supports it at the micro level. In that sense, the bicycle can be one of the most effective means to eradicate poverty in poor nations.

    Female emancipation

    See also: Bicycling and feminism

    “Let go – but stand by”; Frances Willard learning to ride a bicycle[98]

    The safety bicycle gave women unprecedented mobility, contributing to their emancipation in Western nations. As bicycles became safer and cheaper, more women had access to the personal freedom that bicycles embodied, and so the bicycle came to symbolize the New Woman of the late 19th century, especially in Britain and the United States.[7][99] The bicycle craze in the 1890s also led to a movement for so-called rational dress, which helped liberate women from corsets and ankle-length skirts and other restrictive garments, substituting the then-shocking bloomers.[7]

    The bicycle was recognized by 19th-century feminists and suffragists as a “freedom machine” for women. American Susan B. Anthony said in a New York World interview on 2 February 1896: “I think it has done more to emancipate woman than any one thing in the world. I rejoice every time I see a woman ride by on a wheel. It gives her a feeling of self-reliance and independence the moment she takes her seat; and away she goes, the picture of untrammelled womanhood.”[100]: 859  In 1895 Frances Willard, the tightly laced president of the Woman’s Christian Temperance Union, wrote A Wheel Within a Wheel: How I Learned to Ride the Bicycle, with Some Reflections by the Way, a 75-page illustrated memoir praising “Gladys”, her bicycle, for its “gladdening effect” on her health and political optimism.[98] Willard used a cycling metaphor to urge other suffragists to action.[98]

    In 1985, Georgena Terry started the first women-specific bicycle company. Her designs featured frame geometry and wheel sizes chosen to better fit women, with shorter top tubes and more suitable reach.[101]

    Economic implications

    Columbia Bicycles advertisement from 1886

    Bicycle manufacturing proved to be a training ground for other industries and led to the development of advanced metalworking techniques, both for the frames themselves and for special components such as ball bearingswashers, and sprockets. These techniques later enabled skilled metalworkers and mechanics to develop the components used in early automobiles and aircraft.

    Wilbur and Orville Wright, a pair of businessmen, ran the Wright Cycle Company which designed, manufactured and sold their bicycles during the bike boom of the 1890s.[102]

    They also served to teach the industrial models later adopted, including mechanization and mass production (later copied and adopted by Ford and General Motors),[103][104][105] vertical integration[104] (also later copied and adopted by Ford), aggressive advertising[106] (as much as 10% of all advertising in U.S. periodicals in 1898 was by bicycle makers),[107] lobbying for better roads (which had the side benefit of acting as advertising, and of improving sales by providing more places to ride),[105] all first practiced by Pope.[105] In addition, bicycle makers adopted the annual model change[103][108] (later derided as planned obsolescence, and usually credited to General Motors), which proved very successful.[109]

    Early bicycles were an example of conspicuous consumption, being adopted by the fashionable elites.[110][111][112][103][113][114][115][116] In addition, by serving as a platform for accessories, which could ultimately cost more than the bicycle itself, it paved the way for the likes of the Barbie doll.[103][117][118]

    Bicycles helped create, or enhance, new kinds of businesses, such as bicycle messengers,[119] traveling seamstresses,[120] riding academies,[121] and racing rinks.[122][121] Their board tracks were later adapted to early motorcycle and automobile racing. There were a variety of new inventions, such as spoke tighteners,[123] and specialized lights,[118][123] socks and shoes,[124] and even cameras, such as the Eastman Company‘s Poco.[125] Probably the best known and most widely used of these inventions, adopted well beyond cycling, is Charles Bennett’s Bike Web, which came to be called the jock strap.[126]

    A man uses a bicycle to carry goods in Ouagadougou, Burkina Faso.

    They also presaged a move away from public transit[127] that would explode with the introduction of the automobile.

    J. K. Starley’s company became the Rover Cycle Company Ltd. in the late 1890s, and then renamed the Rover Company when it started making cars. Morris Motors Limited (in Oxford) and Škoda also began in the bicycle business, as did the Wright brothers.[128] Alistair Craig, whose company eventually emerged to become the engine manufacturers Ailsa Craig, also started from manufacturing bicycles, in Glasgow in March 1885.

    In general, U.S. and European cycle manufacturers used to assemble cycles from their own frames and components made by other companies, although very large companies (such as Raleigh) used to make almost every part of a bicycle (including bottom brackets, axles, etc.) In recent years, those bicycle makers have greatly changed their methods of production. Now, almost none of them produce their own frames.

    Many newer or smaller companies only design and market their products; the actual production is done by Asian companies. For example, some 60% of the world’s bicycles are now being made in China. Despite this shift in production, as nations such as China and India become more wealthy, their own use of bicycles has declined due to the increasing affordability of cars and motorcycles.[129] One of the major reasons for the proliferation of Chinese-made bicycles in foreign markets is the lower cost of labor in China.[130]

    In line with the European financial crisis of that time, in 2011 the number of bicycle sales in Italy (1.75 million) passed the number of new car sales.[131]

    Environmental impact

    Bicycles in Utrecht, Netherlands

    One of the profound economic implications of bicycle use is that it liberates the user from motor fuel consumption. (Ballantine, 1972) The bicycle is an inexpensive, fast, healthy and environmentally friendly mode of transport. Ivan Illich stated that bicycle use extended the usable physical environment for people, while alternatives such as cars and motorways degraded and confined people’s environment and mobility.[132] Currently, two billion bicycles are in use around the world. Children, students, professionals, laborers, civil servants and seniors are pedaling around their communities. They all experience the freedom and the natural opportunity for exercise that the bicycle easily provides. Bicycle also has lowest carbon intensity of travel.[133]

    Manufacturing

    See also: List of bicycle manufacturing companies

    J W Waldron’s Smith & Bicycle Works in Brighton, England, ca.1900

    The global bicycle market is $61 billion in 2011.[134] As of 2009, 130 million bicycles were sold every year globally and 66% of them were made in China.[135]

    Yearproduction (M)sales (M)
    200014.53118.945
    200113.00917.745
    200212.27217.840
    200312.82820.206
    200413.23220.322
    200513.21820.912
    200613.32021.033
    200713.08621.344
    200813.24620.206
    200912.17819.582
    201012.24120.461
    201111.75820.039
    201211.53719.719
    201311.36019.780
    201411.93920.234
    CountryProduction (M)Parts (M€)Sales (M)AvgSales (M€)
    Italy2.7294911.696288488.4
    Germany2.1392864.1005282164.8
    Poland.991581.094380415.7
    Bulgaria.9509.0821199.8
    The Netherlands.850851.051844887
    Romania.820220.37012546.3
    Portugal.720120.34016054.4
    France.6301702.978307914.2
    Hungary.37010.0441908.4
    Spain.356101.089451491.1
    Czech Republic.33385.33315050
    Lithuania.3230.0501105.5
    Slovakia.2109.0381967.4
    Austria.1380.401450180.5
    Greece.1080.19923346.4
    Belgium.09935.567420238.1
    Sweden.0830.584458267.5
    Great Britain.052343.6303451252.4
    Finland.03432.30032096
    Slovenia.0059.24011026.4
    Croatia00.33311036.6
    Cyprus00.0331103.6
    Denmark00.470450211.5
    Estonia00.06219011.8
    Ireland00.09119017.3
    Latvia00.0401104.4
    Luxembourg00.0104504.5
    Malta00.0111101.2
    EU 2811.939166220.2343927941.2

    Main article: Bicycle law

    Early in its development, as with automobiles, there were restrictions on the operation of bicycles. Along with advertising, and to gain free publicity, Albert A. Pope litigated on behalf of cyclists.[105]

    The 1968 Vienna Convention on Road Traffic of the United Nations considers a bicycle to be a vehicle, and a person controlling a bicycle (whether actually riding or not) is considered an operator or driver.[citation needed][137][138] The traffic codes of many countries reflect these definitions and demand that a bicycle satisfy certain legal requirements before it can be used on public roads. In many jurisdictions, it is an offense to use a bicycle that is not in a roadworthy condition.[139][140]

    In some countries, bicycles must have functioning front and rear lights when ridden after dark.[141][142]

    Some countries require child and/or adult cyclists to wear helmets, as this may protect riders from head trauma. Countries which require adult cyclists to wear helmets include Spain, New Zealand and Australia. Mandatory helmet wearing is one of the most controversial topics in the cycling world, with proponents arguing that it reduces head injuries and thus is an acceptable requirement, while opponents argue that by making cycling seem more dangerous and cumbersome, it reduces cyclist numbers on the streets, creating an overall negative health effect (fewer people cycling for their own health, and the remaining cyclists being more exposed through a reversed safety in numbers effect).[143]

    Theft

    Main article: Bicycle theft

    A bicycle wheel remains chained in a bike rack after the rest of the bicycle has been stolen at east campus of Duke University in Durham, North Carolina.

    Bicycles are popular targets for theft, due to their value and ease of resale.[144] The number of bicycles stolen annually is difficult to quantify as a large number of crimes are not reported.[145] Around 50% of the participants in the Montreal International Journal of Sustainable Transportation survey were subjected to a bicycle theft in their lifetime as active cyclists.[146] Most bicycles have serial numbers that can be recorded to verify identity in case of theft.[147]